
SATELLITE DYNAMICS ABOUT AS’I’EROI1 )S:

C O M P U T I N G  POINCARfi MAPS FOR THE G13NERA1, C A S E

D.J . SCIII~lI;RES
Jet ]’repulsion lmbordory
California lnstituk oj Technology
Pasadena CA, USA
dan-schewcsilzeus  .jpl.nasa.gov

1 .  In t roduc t ion

The study of orbital dynamics of spacecraft about non-spherical bcdies  has usually been
restricted to the “planetary” case where the boc]y is close to all oblate  spheroid, with only
a relatively small degree of equatorial ellipticity. When investigating; spacecraft dynamics
about asteroids, the situation is drastically difrereut as t}le asteroid shape is usually very
distended wit}] many irregular features. Research into the dynamics of particles about
asteroids accounting for their generalized shape has only been initiated relatively recently
([I], [4], [5]). This communication outlines an algorithnl  to compute ]’oincar6 maps and
t}leir  associated monodro]ny  matrices about arbitrary shapes. q’his capability is vital for
syste~natic investigations of motion in this problem.

2.  Problem Formulation

The equations of motion for a particle about an asteroid are lnost ccnlvcnie~lt  in an asteroid-
fixed coordinate systeln  as the asteroid gravity field may be evaluated without transforma-
tioli. Conversely, if stated in an inertial frame, the potmtial  beco:ncs all explicit function
of tinle.

l)cnote the body-fixed position vector as r and the l)ody-fixed velocity vector as i = v.
The l,agrangian  of the particle in the body-fixed syste)n k:

(1)

where  Q is the asteroid rotational velocity vector expressed in the body-fixed fralnc  and U
is the gravitational  force potential  of the asterc)id.  q’he systen~  Inay be expressed in llanlil-
tonia.n fornl  via the well-known Legendre  transformation. The 11 alniltonian  expressed in
l,agrangian  variables is:

(2)
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Taking  the time clcrivative  yields:

~ =  ti”[(r-tflxr)xr] (3)

If the asteroid is rotating uniformly, then  Ifll is constant (and is directed along a prin-
cipal moment of inertia), and the IIamiltonian  is conserved. ~’his  case has analogies with
the 3-din~ensional  restricted three-body problem, although it has no]le  of the geometric
symmetries present in that problem. Still, it is possible to defillc  zero-velocity surfaces,
compute equilibrium points and periodic orbit families and to colnpute  stability parame-
ters [4].

If the asteroid is not uliiformly  rotating, the~l !2 is a time-periodic futlction in the body-
fixed frame (assuming that external torques on the astvroid  ale negligible). q’hc motion of
Q follows a WCI1 defined path described by ellil)tic  functions [2]. III this case the equations
of motion are time-periodic and the IIamiltoniau  is not conserved. This case has analogies
with the elliptic three-body problem, although it alsc) la(ks  the gcolnctric  symmetry present
in that problem. Analysis of this problem is more difficult than the uniformly rotating case,
although the computation of l’oincar6 maps is simple, as explai]led  1~.tcr.

The asteroid gravitational force potentials are ge)lerally  derived from shape models
with an assumed value of constant density, (~iven all asteroid slla,pc  and density, there
are two fundamental approaches to constructing the force potential. The most common
way is to expand the potential in a spherical harmo]lic  expatlsion a Id directly compute
the coefficients of the gravity field by evaluatillg  integrals over the st,, face of the asteroid.
Such an expansion is always truncated at some order, and thus is never a true representa-
tion. Additionally, the series expansion does not convcl gc when insid~’  the smallest sphere
circumscribed about the asteroid and thus is not useful for studying  t,~e gravitational field
close to the body.

A second way to model the potential is to cliscreti~e  the asteroid shape into N tetra-
hedral. Then, using the closed-form solutions for the potential of a tetrahedron [6], the
potential is found by summing cwer all the tetraheclra.  This ap])roacli’ is more time inten-
sive, yet is an exact result for a given asteroid discretization.  hIorcc)i&-,  as this potential
satisfies l,ap]acc’s equation external to the body and Poissol[’s  equi.ticm internal to the
body, it is an excellent candidate for evaluating motion close to or oIl the asteroid surface.

3. Nunlerical  Computat ion of Poincar6  Maps

‘1’o c.omputc  and continue families of periodic orbits and tcj asce~ taiu their stability it
is necessary to compute Poincar6  maps and their associated monodromy matrices [3].
IIue to the generic irregularity of asteroid shapes there are no geo,netrical  symmetries
with which one may reduce or simplify the dynamical problem. AIJo, the construction
of canonical coordinates C1OSC to ac.tiol  I-angle variables is, in genera!, impossible due to
the large deviation of the system from integrable cases. Thus one must develop numerical
approaches to take the p]acc of analytic reductio]ls.

If the central body is undergoing non-uniform I otation, the]l the computation of
l’oi~1car6  maps is silnp]e,  as the period of the I)ody-flxcd  rotaticmal  velocity vector is used
as the Poincar6  surface, reducing the 4110F 11 amiltonian  system to a 31)OF IIami]tonian
mapping. ‘J’hen  in the vicinity of periodic, orbits the full 6 x 6 state transition matrix of the
l,agrangian  systcm will generically not have unity  eigmlvalucs  and call  hc used to converge
upon f[xed points in the 6 dimensional mapping.

,i
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in the cascof a uniformly rotating asteroid the choice of al’oincar6  surface is not as
obvious, and in the neighborhood of periodic orbits tht, 6 x 6 state transition matrix has
two unity eigenvalues. In this situation a 4-dimensional ~oincar~  map must be defined and
its attendant 4 x 4 monodromy matrix computed. In tile following discussion a numerical
procedure to do this is outlined in terms of Lagrangia]l variables.

3.1. FO1LMULATION

Assume a Lagrangian  description in Cartesian coordinates as this is the simplest system
to work with from a r.umerical point of view.

)  =V;(t,r O,VO); i= 1,2,3r; = 7-j(t,  rO, v0 , Vt (4)

AlSO assume that the asteroid is uniformly rotating, and thus the llal’~i~tol’ial~  ~(r> V) = C
is conserved. Also define the more restricted cc)c)rdinatc  set:

R; = }t;(t,  rO, VO), Vi = V;(t, rO, vO); i = 1,2)3;+  ~ (5)

where 1 is an integer to be specified later.

3.2. l’OINCAltl  MA}’ lJEl~INITION

Choose a plane of interest tangent to one of the fundamental coordinate planes, rl = c,
where J is the index mentioned previously. Assume that a particle started on this surface
at time t = O will return to it at a future time t = T, and that the trajectory is transverse
to this plane at both crossings (VI(0), VI(T)  ~ O). The time 7’ is ilnp;cit]y  defined by the
mapping between rI(0) = c and rl(T) =: c, l)ue  to the transversal assumptions and the
form of the Jacobi integraJ,  VI may be solved for as a function of tllc Jacobi constant C.
Performing these reductions produces a 4-dimension l’oincar{:  map ~~aranleterized  by the
Jacobi constant C and the choice of l’oincar~ surface (c and 1):

[Ri(O; C, c), V1(O;  C, c)] -+ [Ri(7’;  6’, c), vj(~’;  C, ~)] (6)

3.3. MONOD}tOMY MK1’ltlX COh4}’UTA’l’10N

Now the 4 x 4 monodromy matrix associated with tile above l’oincar~ map is derived.
Recall the definition of the state transition matrix @(t):

(7)

where U denotes the identity matrix. @ is a 6 x 6 mat]ix and is Inost easily understood as
the partial derivative of the state of the Lagrangian s~rstem at tilne t with respect to the
state of the I,agrangian  system at time i = O. q’bus,

(8)

will be reduced to the 4 x 4 monodromy Inatrix  of the l’oincari ma]> in Equation 6, the
form of this map will be

(9)
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3.3.1. Reduction to the Poincard  Surfacc
First specify 6rl(0) = O,thusconstrainingt  heinitia]  conditions tore[nain  onthel’oincar~
surface. Next force the first return mapping to remain (m the l’oinca]d surface. To do this
a time variation in the map must be introduced, yield  ilIg:

[

dr(T + 67’)
6V(T + (W) 1 [ ‘ro ] + [:$:]]fi~,,= @(T) ~vo

The condition to enforce is:
\

[1@(l’)] ;:O + i](7’)m’ = o

(lo)

(11)

where 0] denotes the ]th row and @J denotes the Jth co]u]n]l of the matrix @. l’his
equation may be solved for 6T, due to the assumed transversality  cf the l’oincar6 map,
yielding:

[ 1 (
6R(T + 671) =
6V(7’ + 6T) v,,~) RN*(7’ )’): [ ~% 1 ’12)@(T) – -----

a 5 x 5 map which takes  the ~clincar~  surface to itself in a ncighbc]ri:ood  of tile nominal
map,

3.3.2. Energy lkduction
To reduce Equation ]2 to an energy conserving 4 x 4 IIlap it n[ust be constrained to lie on
a single energy surface, correspcmding to the condition:

O = JR6R + JV6V + JV16VI (13)

where J is the Jacobi integral and Jx is the partial of J with rm.pcct  to X. Due to the
transversality  assumptions and the form of the Jacobi integral it is possible to solve for
the variation 6V1 at t = O which constrains the mapping to a single energy surface. l)ue
to energy conservation the 5 variables at the first return to the surface will also conform
to Equation 13, and thus 6VI(7’) may be ignored as it can he reconstructed from the 4
other variables 6R(7’)  and W(T).

Substituting for 6VI(0) and reducing the incleces  results in the fi]lal  monodrc)my  nlap-
ping:

(14)

‘1’his map is energy preserving and carries a neighborhood of a l’oincar6 surface into itself.
When close to periodic orbits, this mapping does not generically have unity eigenvalues
and may be used to converge upon fixed points of the 4 dimensional l’oincar6 map.
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3.4. RI;1,A1’1ON  TO A IIAMIL1’ONIAN SYSI’EM

Applying  the Legendrc  transformation to the o]igina]  Lagrangian  syst(:ln,  the matrix A will
retain its same numerical value,  as for any givc)l Poincar6  map the iteins within the matrix
may bc viewed as fixed parameters of the ma}). ‘1’he  variables 61{ and /iV will transform
linearly to the corresponding Hamiltonian  variables as the l,egcndv  transformation is
linear in Cartesian coordinates, is invertib]c  and depends only OIL parameters which arc
constant for the specific ]’oincard map.

l’hus  J;quation  15 is a similarity transformation away from a }Iall:lltonian systcm,  and
its cigcnvalucs may be interpreted as the cigenvalucx  of a IIatniltoni:.fl  systcni.  This frees
one from computing explicit canonical transformatio]ls  while allowi:lg one to utilize the
thcorctica]  results from IIamiltonian  systems.
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